抱歉,您的浏览器无法访问本站
本页面需要浏览器支持(启用)JavaScript
了解详情 >

链表(数组模拟)

new一个结构体效率很低

单链表 邻接表为主(存储数和图)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// head存储链表头,e[]存储节点的值,ne[]存储节点的next指针,idx表示当前用到了哪个节点
int head, e[N], ne[N], idx;

// 初始化
void init()
{
head = -1;
idx = 0;
}

// 在链表头插入一个数a
void insert(int a)
{
e[idx] = a, ne[idx] = head, head = idx ++ ;
}

// 将头结点删除,需要保证头结点存在
void remove()
{
head = ne[head];
}

双链表 优化某些问题

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
// e[]表示节点的值,l[]表示节点的左指针,r[]表示节点的右指针,idx表示当前用到了哪个节点
int e[N], l[N], r[N], idx;

// 初始化
void init()
{
//0是左端点,1是右端点
r[0] = 1, l[1] = 0;
idx = 2;
}

// 在节点a的右边插入一个数x
void insert(int a, int x)
{
e[idx] = x;
l[idx] = a, r[idx] = r[a];
l[r[a]] = idx, r[a] = idx ++ ;
}

// 删除节点a
void remove(int a)
{
l[r[a]] = l[a];
r[l[a]] = r[a];
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// tt表示栈顶
int stk[N], tt = 0;

// 向栈顶插入一个数
stk[ ++ tt] = x;

// 从栈顶弹出一个数
tt -- ;

// 栈顶的值
stk[tt];

// 判断栈是否为空
if (tt > 0)
{

}

单调栈

1
2
3
4
5
6
7
常见模型:找出每个数左边离它最近的比它大/小的数
int tt = 0;
for (int i = 1; i <= n; i ++ )
{
while (tt && check(stk[tt], i)) tt -- ;
stk[ ++ tt] = i;
}

队列

普通队列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// hh 表示队头,tt表示队尾
int q[N], hh = 0, tt = -1;

// 向队尾插入一个数
q[ ++ tt] = x;

// 从队头弹出一个数
hh ++ ;

// 队头的值
q[hh];

// 判断队列是否为空
if (hh <= tt)
{

}

循环队列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// hh 表示队头,tt表示队尾的后一个位置
int q[N], hh = 0, tt = 0;

// 向队尾插入一个数
q[tt ++ ] = x;
if (tt == N) tt = 0;

// 从队头弹出一个数
hh ++ ;
if (hh == N) hh = 0;

// 队头的值
q[hh];

// 判断队列是否为空
if (hh != tt)
{

}

单调队列

1
2
3
4
5
6
7
8
常见模型:找出滑动窗口中的最大值/最小值
int hh = 0, tt = -1;
for (int i = 0; i < n; i ++ )
{
while (hh <= tt && check_out(q[hh])) hh ++ ; // 判断队头是否滑出窗口
while (hh <= tt && check(q[tt], i)) tt -- ;
q[ ++ tt] = i;
}

KMP字符串匹配算法

核心思想:在每次失配时,不是把p串往后移一位,而是把p串往后移动至下一次可以和前面部分匹配的位置,这样就可以跳过大多数的失配步骤。而每次p串移动的步数就是通过查找next[ ]数组确定的。

“非平凡前缀”:指除了最后一个字符以外,一个字符串的全部头部组合。
“非平凡后缀”:指除了第一个字符以外,一个字符串的全部尾部组合(简称前后缀)

next数组的含义:对next[ j ] ,是p[ 1, j ]串中前缀和后缀相同的最大长度(部分匹配值),即 p[ 1, next[ j ] ] = p[ j - next[ j ] + 1, j ],也就是最长公共长度。(起始位1)next数组的求法是通过模板串自己与自己进行匹配操作得出来的

next数组.PNG

对 p = “abcab”

​ p a b c a b
下标 1 2 3 4 5
next[ ] 0 0 0 1 2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
// s[]是长文本,p[]是模式串,n是s的长度,m是p的长度
求模式串的Next数组:
for (int i = 2, j = 0; i <= m; i ++ )
{
while (j && p[i] != p[j + 1]) j = ne[j];

if (p[i] == p[j + 1]) j ++ ;

ne[i] = j;
}

// 匹配
for (int i = 1, j = 0; i <= n; i ++ )
{
while (j && s[i] != p[j + 1]) j = ne[j];
//如果j有对应p串的元素, 且s[i] != p[j+1], 则失配, 移动p串
//用while是由于移动后可能仍然失配,所以要继续移动直到匹配或整个p串移到后面(j = 0)
if (s[i] == p[j + 1]) j ++ ;
//当前元素匹配,j移向p串下一位
if (j == m)
{
j = ne[j];
// 匹配成功后的逻辑
}
}

Tire树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
int son[N][26], cnt[N], idx;//idx意义同本身的值和指向下一个结点的指针
// 0号点既是根节点,又是空节点
// son[][]存储树中每个节点的子节点
// cnt[]存储以每个节点结尾的单词数量

// 插入一个字符串
void insert(char *str)
{
int p = 0;
for (int i = 0; str[i]; i ++ )
{
int u = str[i] - 'a';
if (!son[p][u]) son[p][u] = ++ idx;
p = son[p][u];
}
cnt[p] ++ ;
}

// 查询字符串出现的次数
int query(char *str)
{
int p = 0;
for (int i = 0; str[i]; i ++ )
{
int u = str[i] - 'a';
if (!son[p][u]) return 0;
p = son[p][u];
}
return cnt[p];
}

并查集

1.将两个集合合并
2.询问两个元素是否在一个集合当中
基本原理:每个集合用一棵树来表示。树根的编号就是整个集合的编号。每个节点存储它的父节点,p[x]表示x的父节点

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
(1)朴素并查集:

int p[N]; //存储每个点的祖宗节点

// 返回x的祖宗节点
int find(int x)
{//返回x的祖先节点 + 路径压缩
//祖先节点的父节点是自己本身
if (p[x] != x) //将x的父亲置为x父亲的祖先节点,实现路径的压缩
p[x] = find(p[x]);
return p[x];
}

// 初始化,假定节点编号是1~n
for (int i = 1; i <= n; i ++ ) p[i] = i;
//就是将当前数据的父节点指向自己
// 合并a和b所在的两个集合:
p[find(a)] = find(b);


(2)维护size的并查集:

int p[N], size[N];
//p[]存储每个点的祖宗节点, size[]只有祖宗节点的有意义,表示祖宗节点所在集合中的点的数量

// 返回x的祖宗节点
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}

// 初始化,假定节点编号是1~n
for (int i = 1; i <= n; i ++ )
{
p[i] = i;
size[i] = 1;
}

// 合并a和b所在的两个集合:
size[find(b)] += size[find(a)];
p[find(a)] = find(b);


(3)维护到祖宗节点距离的并查集:

int p[N], d[N];
//p[]存储每个点的祖宗节点, d[x]存储x到p[x]的距离

// 返回x的祖宗节点
int find(int x)
{
if (p[x] != x)
{
int u = find(p[x]);
d[x] += d[p[x]];
p[x] = u;
}
return p[x];
}

// 初始化,假定节点编号是1~n
for (int i = 1; i <= n; i ++ )
{
p[i] = i;
d[i] = 0;
}

// 合并a和b所在的两个集合:
p[find(a)] = find(b);
d[find(a)] = distance; // 根据具体问题,初始化find(a)的偏移量

堆是一种完全二叉树,复习一下完全二叉树的定义,完全二叉树的形式是指除了最后一层之外,其他所有层的结点都是满的,而最后一层的所有结点都靠左边。教材上定义如下:

若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。

如下图所示,就是一种典型的完全二叉树:

img

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
// h[N]存储堆中的值, h[1]是堆顶,x的左儿子是2x, 右儿子是2x + 1
// ph[k]存储第k个插入的点在堆中的位置
// hp[k]存储堆中下标是k的点是第几个插入的
int h[N], ph[N], hp[N], size;

// 交换两个点,及其映射关系
void heap_swap(int a, int b)
{
swap(ph[hp[a]],ph[hp[b]]);
swap(hp[a], hp[b]);
swap(h[a], h[b]);
}

void down(int u)
{
int t = u;
if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2;
if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1 ;
if (u != t)
{
heap_swap(u, t);
down(t);
}
}

void up(int u)
{
while (u / 2 && h[u] < h[u / 2])
{
heap_swap(u, u / 2);
u >>= 1;
}
}

// O(n)建堆
for (int i = n / 2; i; i -- ) down(i);

一般哈希

(1) 拉链法
int h[N], e[N], ne[N], idx;

// 向哈希表中插入一个数
void insert(int x)
{
    int k = (x % N + N) % N;
    e[idx] = x;
    ne[idx] = h[k];
    h[k] = idx ++ ;
}

// 在哈希表中查询某个数是否存在
bool find(int x)
{
    int k = (x % N + N) % N;
    for (int i = h[k]; i != -1; i = ne[i])
        if (e[i] == x)
            return true;

    return false;
}

(2) 开放寻址法
int h[N];

1
2
3
4
5
6
7
8
9
10
11
// 如果x在哈希表中,返回x的下标;如果x不在哈希表中,返回x应该插入的位置
int find(int x)
{
int t = (x % N + N) % N;
while (h[t] != null && h[t] != x)
{
t ++ ;
if (t == N) t = 0;
}
return t;
}

字符串哈希

核心思想:将字符串看成P进制数,P的经验值是131或13331,取这两个值的冲突概率低
小技巧:取模的数用2^64,这样直接用unsigned long long存储,溢出的结果就是取模的结果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
typedef unsigned long long ULL;
ULL h[N], p[N]; // h[k]存储字符串前k个字母的哈希值, p[k]存储 P^k mod 2^64

// 初始化
p[0] = 1;
for (int i = 1; i <= n; i ++ )
{
h[i] = h[i - 1] * P + str[i];
p[i] = p[i - 1] * P;
}

// 计算子串 str[l ~ r] 的哈希值
ULL get(int l, int r)
{
return h[r] - h[l - 1] * p[r - l + 1];
}

评论