int son[N][26], cnt[N], idx;//idx意义同本身的值和指向下一个结点的指针 // 0号点既是根节点,又是空节点 // son[][]存储树中每个节点的子节点 // cnt[]存储以每个节点结尾的单词数量
// 插入一个字符串 voidinsert(char *str) { int p = 0; for (int i = 0; str[i]; i ++ ) { int u = str[i] - 'a'; if (!son[p][u]) son[p][u] = ++ idx; p = son[p][u]; } cnt[p] ++ ; }
// 查询字符串出现的次数 intquery(char *str) { int p = 0; for (int i = 0; str[i]; i ++ ) { int u = str[i] - 'a'; if (!son[p][u]) return0; p = son[p][u]; } return cnt[p]; }
// 交换两个点,及其映射关系 voidheap_swap(int a, int b) { swap(ph[hp[a]],ph[hp[b]]); swap(hp[a], hp[b]); swap(h[a], h[b]); }
voiddown(int u) { int t = u; if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2; if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1 ; if (u != t) { heap_swap(u, t); down(t); } }
voidup(int u) { while (u / 2 && h[u] < h[u / 2]) { heap_swap(u, u / 2); u >>= 1; } }
// O(n)建堆 for (int i = n / 2; i; i -- ) down(i);
一般哈希
(1) 拉链法 int h[N], e[N], ne[N], idx;
// 向哈希表中插入一个数
void insert(int x)
{
int k = (x % N + N) % N;
e[idx] = x;
ne[idx] = h[k];
h[k] = idx ++ ;
}
// 在哈希表中查询某个数是否存在
bool find(int x)
{
int k = (x % N + N) % N;
for (int i = h[k]; i != -1; i = ne[i])
if (e[i] == x)
return true;
return false;
}
(2) 开放寻址法 int h[N];
1 2 3 4 5 6 7 8 9 10 11
// 如果x在哈希表中,返回x的下标;如果x不在哈希表中,返回x应该插入的位置 intfind(int x) { int t = (x % N + N) % N; while (h[t] != null && h[t] != x) { t ++ ; if (t == N) t = 0; } return t; }
字符串哈希
核心思想:将字符串看成P进制数,P的经验值是131或13331,取这两个值的冲突概率低 小技巧:取模的数用2^64,这样直接用unsigned long long存储,溢出的结果就是取模的结果