抱歉,您的浏览器无法访问本站
本页面需要浏览器支持(启用)JavaScript
了解详情 >

安卓so加载流程源码分析 | oacia = oaciaのBbBlog~ = DEVIL or SWEET

很好的文,学习!

so 的启动过程

so的静态加载,要加载的 so 一般已经内置在 apk 的 lib/[arch]/

1
System.loadLibrary("native");

动态加载,加载任意路径下的 so

1
2
String soPath = "/data/data/com.example.myapp/libmynative.so";
System.load(soPath);

我们从native层的Runtime_nativeLoad开始看,它继续调用了 JVM_NativeLoad

1
2
3
4
5
6
JNIEXPORT jstring JNICALL
Runtime_nativeLoad(JNIEnv* env, jclass ignored, jstring javaFilename,
jobject javaLoader, jclass caller)
{
return JVM_NativeLoad(env, javaFilename, javaLoader, caller);
}

JVM_NativeLoad

获取当前进程的 javaVM 对象并调用 javaVMLoadNativeLibrary 方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
JNIEXPORT jstring JVM_NativeLoad(JNIEnv* env,
jstring javaFilename,
jobject javaLoader,
jclass caller) {
ScopedUtfChars filename(env, javaFilename);
if (filename.c_str() == nullptr) {
return nullptr;
}

std::string error_msg;
{
art::JavaVMExt* vm = art::Runtime::Current()->GetJavaVM();
bool success = vm->LoadNativeLibrary(env,
filename.c_str(),
javaLoader,
caller,
&error_msg);
if (success) {
return nullptr;
}
}

// Don't let a pending exception from JNI_OnLoad cause a CheckJNI issue with NewStringUTF.
env->ExceptionClear();
return env->NewStringUTF(error_msg.c_str());
}

LoadNativeLibrary

代码比较长

主要分为:

检查库是否已加载:首先,它会检查该库是否已加载。如果已经加载,并且类加载器一致,它会返回成功。

获取类加载器和 JNI 环境:如果库没有加载,它会尝试获取当前类加载器和 JNIEnv,并确保类加载器不为 null

加载共享库:使用 android::OpenNativeLibrary 加载 .so 文件,并调用 JNI_OnLoad 进行 JNI 初始化。

库的同步管理:通过 MutexLocklibraries_ 对象进行线程安全的操作,确保库只加载一次。

OpenNativeLibrary

看关键部分

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
std::optional<NativeLoaderNamespace> ns = FindApexNamespace(caller_location);
if (ns.has_value()) {
const android_dlextinfo dlextinfo = {
.flags = ANDROID_DLEXT_USE_NAMESPACE,
.library_namespace = ns.value().ToRawAndroidNamespace(),
};
void* handle = android_dlopen_ext(path, RTLD_NOW, &dlextinfo);
char* dlerror_msg = handle == nullptr ? strdup(dlerror()) : nullptr;
ALOGD("Load %s using APEX ns %s for caller %s: %s",
path,
ns.value().name().c_str(),
caller_location,
dlerror_msg == nullptr ? "ok" : dlerror_msg);
if (dlerror_msg != nullptr) {
*error_msg = dlerror_msg;
}
return handle;
}

在 Android 系统中加载一个共享库(.so 文件),并利用 APEX 命名空间 来加载库。APEX(Android Pony EXpress)是 Android 10 引入的一个功能,它允许将系统组件(如系统库)打包成独立的单元,并在运行时进行管理和加载

android_dlopen_ext

1
2
3
4
5
6
//android-platform\bionic\libdl\libdl.cpp
__attribute__((__weak__))
void* android_dlopen_ext(const char* filename, int flag, const android_dlextinfo* extinfo) {
const void* caller_addr = __builtin_return_address(0);
return __loader_android_dlopen_ext(filename, flag, extinfo, caller_addr);
}

**filename**:要加载的共享库的路径(.so 文件的路径)。

**flag**:加载标志,通常传入 RTLD_NOWRTLD_LAZY

RTLD_NOW 立即解析所有符号,并在加载时报告任何解析错误 RTLD_LAZY 只在符号首次使用时解析 RTLD_GLOBAL 将库及其符号添加到全局命名空间中,以便其他库可以使用这些符号

**extinfo**:扩展信息,类型是 android_dlextinfo。它是一个结构体,用于传递额外的配置信息,例如命名空间、是否使用 Native Bridge 等。

__loader_android_dlopen_ext

__loader_android_dlopen_ext 调用了 dlopen_ext

1
2
3
4
5
6
7
//android-platform\bionic\linker\dlfcn.cpp
void* __loader_android_dlopen_ext(const char* filename,
int flags,
const android_dlextinfo* extinfo,
const void* caller_addr) {
return dlopen_ext(filename, flags, extinfo, caller_addr);
}

dlopen_ext

dlopen_ext 中调用了 do_dlopen

1
2
3
4
5
6
7
8
9
10
11
12
13
14
//android-platform\bionic\linker\dlfcn.cpp
static void* dlopen_ext(const char* filename,
int flags,
const android_dlextinfo* extinfo,
const void* caller_addr) {
ScopedPthreadMutexLocker locker(&g_dl_mutex);
g_linker_logger.ResetState();
void* result = do_dlopen(filename, flags, extinfo, caller_addr);
if (result == nullptr) {
__bionic_format_dlerror("dlopen failed", linker_get_error_buffer());
return nullptr;
}
return result;
}

do_dlopen

日志记录:在加载库时,它通过日志记录加载过程和调用栈。

验证参数:对 dlopen 的标志 (flags) 和扩展信息 (extinfo) 进行合法性检查。

APEX 路径转换:它处理 /system/lib 路径的转换,确保在 APEX 模块下也能正确加载库。

库加载:最终调用 find_library 查找并加载库,调用构造函数来初始化库。

最为关键的是调用 find_library 获取到了待加载 sosoinfo

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
...
// 重头戏,这里调用了 find_library 获取到了这个 so 的 soinfo
soinfo* si = find_library(ns, translated_name, flags, extinfo, caller);
loading_trace.End();

if (si != nullptr) {
void* handle = si->to_handle();
LD_LOG(kLogDlopen,
"... dlopen calling constructors: realpath=\"%s\", soname=\"%s\", handle=%p",
si->get_realpath(), si->get_soname(), handle);
// 调用 call_constructors 函数来加载 so 中的 init 以及 init_array
si->call_constructors();
failure_guard.Disable();
LD_LOG(kLogDlopen,
"... dlopen successful: realpath=\"%s\", soname=\"%s\", handle=%p",
si->get_realpath(), si->get_soname(), handle);
return handle;
}

soinfo

soinfo 结构体如下所示,可以用在 frida 或者 ida 中

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
//IMPORTANT
//ELF64 启用该宏
#define __LP64__ 1
//ELF32 启用该宏
//#define __work_around_b_24465209__ 1

/*
//https://android.googlesource.com/platform/bionic/+/master/linker/Android.bp
架构为 32 位 定义__work_around_b_24465209__宏
arch: {
arm: {cflags: ["-D__work_around_b_24465209__"],},
x86: {cflags: ["-D__work_around_b_24465209__"],},
}
*/

//android-platform\bionic\libc\include\link.h
#if defined(__LP64__)
#define ElfW(type) Elf64_ ## type
#else
#define ElfW(type) Elf32_ ## type
#endif

//android-platform\bionic\linker\linker_common_types.h
// Android uses RELA for LP64.
#if defined(__LP64__)
#define USE_RELA 1
#endif

//android-platform\bionic\libc\kernel\uapi\asm-generic\int-ll64.h
//__signed__-->signed
typedef signed char __s8;
typedef unsigned char __u8;
typedef signed short __s16;
typedef unsigned short __u16;
typedef signed int __s32;
typedef unsigned int __u32;
typedef signed long long __s64;
typedef unsigned long long __u64;

//A12-src\msm-google\include\uapi\linux\elf.h
/* 32-bit ELF base types. */
typedef __u32 Elf32_Addr;
typedef __u16 Elf32_Half;
typedef __u32 Elf32_Off;
typedef __s32 Elf32_Sword;
typedef __u32 Elf32_Word;

/* 64-bit ELF base types. */
typedef __u64 Elf64_Addr;
typedef __u16 Elf64_Half;
typedef __s16 Elf64_SHalf;
typedef __u64 Elf64_Off;
typedef __s32 Elf64_Sword;
typedef __u32 Elf64_Word;
typedef __u64 Elf64_Xword;
typedef __s64 Elf64_Sxword;

typedef struct dynamic{
Elf32_Sword d_tag;
union{
Elf32_Sword d_val;
Elf32_Addr d_ptr;
} d_un;
} Elf32_Dyn;

typedef struct {
Elf64_Sxword d_tag; /* entry tag value */
union {
Elf64_Xword d_val;
Elf64_Addr d_ptr;
} d_un;
} Elf64_Dyn;

typedef struct elf32_rel {
Elf32_Addr r_offset;
Elf32_Word r_info;
} Elf32_Rel;

typedef struct elf64_rel {
Elf64_Addr r_offset; /* Location at which to apply the action */
Elf64_Xword r_info; /* index and type of relocation */
} Elf64_Rel;

typedef struct elf32_rela{
Elf32_Addr r_offset;
Elf32_Word r_info;
Elf32_Sword r_addend;
} Elf32_Rela;

typedef struct elf64_rela {
Elf64_Addr r_offset; /* Location at which to apply the action */
Elf64_Xword r_info; /* index and type of relocation */
Elf64_Sxword r_addend; /* Constant addend used to compute value */
} Elf64_Rela;

typedef struct elf32_sym{
Elf32_Word st_name;
Elf32_Addr st_value;
Elf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
Elf32_Half st_shndx;
} Elf32_Sym;

typedef struct elf64_sym {
Elf64_Word st_name; /* Symbol name, index in string tbl */
unsigned char st_info; /* Type and binding attributes */
unsigned char st_other; /* No defined meaning, 0 */
Elf64_Half st_shndx; /* Associated section index */
Elf64_Addr st_value; /* Value of the symbol */
Elf64_Xword st_size; /* Associated symbol size */
} Elf64_Sym;


#define EI_NIDENT 16

typedef struct elf32_hdr{
unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry; /* Entry point */
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;
} Elf32_Ehdr;

typedef struct elf64_hdr {
unsigned char e_ident[EI_NIDENT]; /* ELF "magic number" */
Elf64_Half e_type;
Elf64_Half e_machine;
Elf64_Word e_version;
Elf64_Addr e_entry; /* Entry point virtual address */
Elf64_Off e_phoff; /* Program header table file offset */
Elf64_Off e_shoff; /* Section header table file offset */
Elf64_Word e_flags;
Elf64_Half e_ehsize;
Elf64_Half e_phentsize;
Elf64_Half e_phnum;
Elf64_Half e_shentsize;
Elf64_Half e_shnum;
Elf64_Half e_shstrndx;
} Elf64_Ehdr;

/* These constants define the permissions on sections in the program
header, p_flags. */
#define PF_R 0x4
#define PF_W 0x2
#define PF_X 0x1

typedef struct elf32_phdr{
Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;
} Elf32_Phdr;

typedef struct elf64_phdr {
Elf64_Word p_type;
Elf64_Word p_flags;
Elf64_Off p_offset; /* Segment file offset */
Elf64_Addr p_vaddr; /* Segment virtual address */
Elf64_Addr p_paddr; /* Segment physical address */
Elf64_Xword p_filesz; /* Segment size in file */
Elf64_Xword p_memsz; /* Segment size in memory */
Elf64_Xword p_align; /* Segment alignment, file & memory */
} Elf64_Phdr;

typedef struct elf32_shdr {
Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;
} Elf32_Shdr;

typedef struct elf64_shdr {
Elf64_Word sh_name; /* Section name, index in string tbl */
Elf64_Word sh_type; /* Type of section */
Elf64_Xword sh_flags; /* Miscellaneous section attributes */
Elf64_Addr sh_addr; /* Section virtual addr at execution */
Elf64_Off sh_offset; /* Section file offset */
Elf64_Xword sh_size; /* Size of section in bytes */
Elf64_Word sh_link; /* Index of another section */
Elf64_Word sh_info; /* Additional section information */
Elf64_Xword sh_addralign; /* Section alignment */
Elf64_Xword sh_entsize; /* Entry size if section holds table */
} Elf64_Shdr;

typedef unsigned long uintptr_t;
struct link_map
{
uintptr_t l_addr;
char * l_name;
uintptr_t l_ld;
struct link_map * l_next;
struct link_map * l_prev;
};


//android-platform\bionic\linker\linker_soinfo.h
typedef void (*linker_dtor_function_t)();
typedef void (*linker_ctor_function_t)(int, char**, char**);

#if defined(__work_around_b_24465209__)
#define SOINFO_NAME_LEN 128
#endif

struct soinfo {
#if defined(__work_around_b_24465209__)
char old_name_[SOINFO_NAME_LEN];
#endif
const ElfW(Phdr)* phdr;
size_t phnum;
#if defined(__work_around_b_24465209__)
ElfW(Addr) unused0; // DO NOT USE, maintained for compatibility.
#endif
ElfW(Addr) base;
size_t size;

#if defined(__work_around_b_24465209__)
uint32_t unused1; // DO NOT USE, maintained for compatibility.
#endif

ElfW(Dyn)* dynamic;

#if defined(__work_around_b_24465209__)
uint32_t unused2; // DO NOT USE, maintained for compatibility
uint32_t unused3; // DO NOT USE, maintained for compatibility
#endif

soinfo* next;
uint32_t flags_;

const char* strtab_;
ElfW(Sym)* symtab_;

size_t nbucket_;
size_t nchain_;
uint32_t* bucket_;
uint32_t* chain_;

#if !defined(__LP64__)
ElfW(Addr)** unused4; // DO NOT USE, maintained for compatibility
#endif

#if defined(USE_RELA)
ElfW(Rela)* plt_rela_;
size_t plt_rela_count_;

ElfW(Rela)* rela_;
size_t rela_count_;
#else
ElfW(Rel)* plt_rel_;
size_t plt_rel_count_;

ElfW(Rel)* rel_;
size_t rel_count_;
#endif

linker_ctor_function_t* preinit_array_;
size_t preinit_array_count_;

linker_ctor_function_t* init_array_;
size_t init_array_count_;
linker_dtor_function_t* fini_array_;
size_t fini_array_count_;

linker_ctor_function_t init_func_;
linker_dtor_function_t fini_func_;


#if defined(__arm__)
// ARM EABI section used for stack unwinding.
uint32_t* ARM_exidx;
size_t ARM_exidx_count;
#endif
size_t ref_count_;

link_map link_map_head;

bool constructors_called;

// When you read a virtual address from the ELF file, add this
// value to get the corresponding address in the process' address space.
ElfW(Addr) load_bias;

#if !defined(__LP64__)
bool has_text_relocations;
#endif
bool has_DT_SYMBOLIC;

};

call_constructors

在这个函数中会先加载 init , 在 so 中的函数名一般为 init_proc , 然后加载 init_array 中的函数

find_library

接下来在 find_library 中调用了 find_libraries

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
//android-platform\bionic\linker\linker.cpp
static soinfo* find_library(android_namespace_t* ns,
const char* name, int rtld_flags,
const android_dlextinfo* extinfo,
soinfo* needed_by) {
soinfo* si = nullptr;

// 如果 name 是空的,则为 si 赋值为 somain
//somain: main process, always the one after libdl_info
if (name == nullptr) {
si = solist_get_somain();// 这个函数将会返回 somain;
} else if (!find_libraries(ns,
needed_by,
&name,
1,
&si,
nullptr,
0,
rtld_flags,
extinfo,
false /* add_as_children */)) {
if (si != nullptr) {
soinfo_unload(si);
}
return nullptr;
}

// 加载 so 成功,so 的引用次数 + 1, 对应了 JavaVMExt::LoadNativeLibrary 中
//so 加载时 这一部分的注释↓
/*
Below we dlopen but there is no paired dlclose, this would be necessary if we supported
class unloading. Libraries will only be unloaded when the reference count (incremented by
dlopen) becomes zero from dlclose.
*/
si->increment_ref_count();

return si;
}

find_libraries

Linker在加載so時大致可以分成五步:

  1. 讀取so文件:讀取ehdr( Elf header )、phdr( Program header )等信息。
  2. 載入so:預留一片內存空間,隨後將相關信息加載進去,最後修正so。
  3. 預鏈接:主要處理.dynamic節的內容。
  4. 正式鏈接:處理重定位的信息。
  5. 調用.init.init_array

函数声明:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
//android-platform\bionic\linker\linker.cpp
/*
ns 加载的命名空间 = 调用者的命名空间
start_with 调用者的 soinfo
library_names 所有加载库名称
library_names_count 加载库数量
soinfos 保存加载完成的 soinfo
ld_preloads 保存预加载库,没有可以为 null
ld_preloads_count 预加载库数量
extinfo Android 调用附带
add_as_children 是否作为 start_with 的子库
search_linked_namespaces 查询链接命名空间
namespaces 链接命名空间
*/
bool find_libraries(android_namespace_t* ns,
soinfo* start_with,
const char* const library_names[],
size_t library_names_count,
soinfo* soinfos[],
std::vector<soinfo*>* ld_preloads,
size_t ld_preloads_count,
int rtld_flags,
const android_dlextinfo* extinfo,
bool add_as_children,
std::vector<android_namespace_t*>* namespaces)

准备阶段

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
 // Step 0: prepare.
std::unordered_map<const soinfo*, ElfReader> readers_map;
LoadTaskList load_tasks;
//循环遍历要加载的共享库名称(library_names),为每个库创建一个 LoadTask。
for (size_t i = 0; i < library_names_count; ++i) {
const char* name = library_names[i];
//LoadTask::create 方法创建每个库的加载任务,并将其添加到 load_tasks 列表中。每个任务将负责加载一个库。
load_tasks.push_back(LoadTask::create(name, start_with, ns, &readers_map));
}

// 检查 soinfos 是否为空:如果 soinfos 数组为空,代码会在栈上为其分配内存。
//soinfos 是一个指向 soinfo 对象的指针数组,每个 soinfo 代表一个已经加载的共享库。

if (soinfos == nullptr) {
size_t soinfos_size = sizeof(soinfo*)*library_names_count;
soinfos = reinterpret_cast<soinfo**>(alloca(soinfos_size));
memset(soinfos, 0, soinfos_size);
}

// list of libraries to link - see step 2.
size_t soinfos_count = 0;
// 加载任务清理
auto scope_guard = android::base::make_scope_guard([&]() {
for (LoadTask* t : load_tasks) {
LoadTask::deleter(t);
}
});

ZipArchiveCache zip_archive_cache;
soinfo_list_t new_global_group_members;

寻找依赖库,添加到待加载队列

将待加载的 so 的依赖库添加到 load_tasks 队列中,此时并不会加载依赖库

ida 中Needed Library 开头的就是这一个 so 的所有依赖库

扩展加载任务列表:代码首先扩展了加载任务列表,处理每个库的依赖关系,确保 DT_NEEDED 库(即当前库依赖的库)也能正确加载。

命名空间管理:通过命名空间管理库的加载和依赖关系,确保每个库能够在正确的环境中加载,避免冲突。

预加载库处理:如果某些库需要预加载,它们会被添加到预加载库列表中,以便在合适的时机先行加载。

全局库管理:对于标记为全局的库,它们会被添加到全局组成员中,并更新所有相关命名空间,确保它们在不同的命名空间中共享。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
// Step 1: expand the list of load_tasks to include
// all DT_NEEDED libraries (do not load them just yet)
for (size_t i = 0; i<load_tasks.size(); ++i) {
LoadTask* task = load_tasks[i];
soinfo* needed_by = task->get_needed_by();

bool is_dt_needed = needed_by != nullptr && (needed_by != start_with || add_as_children);
task->set_extinfo(is_dt_needed ? nullptr : extinfo);
task->set_dt_needed(is_dt_needed);

LD_LOG(kLogDlopen, "find_libraries(ns=%s): task=%s, is_dt_needed=%d", ns->get_name(),
task->get_name(), is_dt_needed);

// Note: start from the namespace that is stored in the LoadTask. This namespace
// is different from the current namespace when the LoadTask is for a transitive
// dependency and the lib that created the LoadTask is not found in the
// current namespace but in one of the linked namespace.
if (!find_library_internal(const_cast<android_namespace_t*>(task->get_start_from()),
task,
&zip_archive_cache,
&load_tasks,
rtld_flags)) {
return false;
}

soinfo* si = task->get_soinfo();

if (is_dt_needed) {
needed_by->add_child(si);
}

// When ld_preloads is not null, the first
// ld_preloads_count libs are in fact ld_preloads.
bool is_ld_preload = false;
if (ld_preloads != nullptr && soinfos_count < ld_preloads_count) {
ld_preloads->push_back(si);
is_ld_preload = true;
}

if (soinfos_count < library_names_count) {
soinfos[soinfos_count++] = si;
}

// Add the new global group members to all initial namespaces. Do this secondary namespace setup
// at the same time that libraries are added to their primary namespace so that the order of
// global group members is the same in the every namespace. Only add a library to a namespace
// once, even if it appears multiple times in the dependency graph.
if (is_ld_preload || (si->get_dt_flags_1() & DF_1_GLOBAL) != 0) {
if (!si->is_linked() && namespaces != nullptr && !new_global_group_members.contains(si)) {
new_global_group_members.push_back(si);
for (auto linked_ns : *namespaces) {
if (si->get_primary_namespace() != linked_ns) {
linked_ns->add_soinfo(si);
si->add_secondary_namespace(linked_ns);
}
}
}
}
}

find_library_internal

检查库是否已加载:首先,函数会检查库是否已经加载过,如果已经加载,则直接返回。

加载库:如果库尚未加载,它会尝试在当前命名空间中加载库。它会调用 load_library 尝试加载库,并在命名空间之间递归查找。

免疫库处理:对于一些特殊的免疫库(例如系统预装库),它会切换到默认命名空间进行加载。

查找链接的命名空间:如果库仍未找到,函数会继续在所有链接的命名空间中查找该库。

返回结果:如果在所有命名空间和链接的命名空间中都未找到库,则返回 false

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
//android-platform\bionic\linker\linker.cpp
static bool find_library_internal(android_namespace_t* ns,
LoadTask* task,
ZipArchiveCache* zip_archive_cache,
LoadTaskList* load_tasks,
int rtld_flags) {
soinfo* candidate;

// 如果这个 so 已经被加载过了,就直接给 task 设置完 soinfo 后返回
if (find_loaded_library_by_soname(ns, task->get_name(), true /* search_linked_namespaces */,
&candidate)) {
LD_LOG(kLogDlopen,
"find_library_internal(ns=%s, task=%s): Already loaded (by soname): %s",
ns->get_name(), task->get_name(), candidate->get_realpath());
task->set_soinfo(candidate);
return true;
}

// Library might still be loaded, the accurate detection
// of this fact is done by load_library.
TRACE("[ \"%s\" find_loaded_library_by_soname failed (*candidate=%s@%p). Trying harder... ]",
task->get_name(), candidate == nullptr ? "n/a" : candidate->get_realpath(), candidate);

// 关键函数,用来寻找依赖库
if (load_library(ns, task, zip_archive_cache, load_tasks, rtld_flags,
true /* search_linked_namespaces */)) {
return true;
}

// TODO(dimitry): workaround for http://b/26394120 (the exempt-list)
//exempt lib, 即已经预置在系统库中的 so, 例如 libcrypto.so,libssl.so
// 等等比较著名的库,假如发现是这些库的话,用默认命名空间获取 soinfo
if (ns->is_exempt_list_enabled() && is_exempt_lib(ns, task->get_name(), task->get_needed_by())) {
// For the libs in the exempt-list, switch to the default namespace and then
// try the load again from there. The library could be loaded from the
// default namespace or from another namespace (e.g. runtime) that is linked
// from the default namespace.
LD_LOG(kLogDlopen,
"find_library_internal(ns=%s, task=%s): Exempt system library - trying namespace %s",
ns->get_name(), task->get_name(), g_default_namespace.get_name());
ns = &g_default_namespace;
if (load_library(ns, task, zip_archive_cache, load_tasks, rtld_flags,
true /* search_linked_namespaces */)) {
return true;
}
}
// END OF WORKAROUND

// if a library was not found - look into linked namespaces
// preserve current dlerror in the case it fails.
// 假如找遍了自己的命名空间还是没找到这个 so 的依赖库的话,就去共享命名空间 (linked namespace)
// 里面去找找看
DlErrorRestorer dlerror_restorer;
LD_LOG(kLogDlopen, "find_library_internal(ns=%s, task=%s): Trying %zu linked namespaces",
ns->get_name(), task->get_name(), ns->linked_namespaces().size());
for (auto& linked_namespace : ns->linked_namespaces()) {
if (find_library_in_linked_namespace(linked_namespace, task)) {
// Library is already loaded.
if (task->get_soinfo() != nullptr) {
// n.b. This code path runs when find_library_in_linked_namespace found an already-loaded
// library by soname. That should only be possible with a exempt-list lookup, where we
// switch the namespace, because otherwise, find_library_in_linked_namespace is duplicating
// the soname scan done in this function's first call to find_loaded_library_by_soname.
return true;
}

if (load_library(linked_namespace.linked_namespace(), task, zip_archive_cache, load_tasks,
rtld_flags, false /* search_linked_namespaces */)) {
LD_LOG(kLogDlopen, "find_library_internal(ns=%s, task=%s): Found in linked namespace %s",
ns->get_name(), task->get_name(), linked_namespace.linked_namespace()->get_name());
return true;
}
}
}

return false;
}

load_library

函数声明:

1
2
3
4
5
6
7
//android-platform\bionic\linker\linker.cpp
static bool load_library(android_namespace_t* ns,
LoadTask* task,
ZipArchiveCache* zip_archive_cache,
LoadTaskList* load_tasks,
int rtld_flags,
bool search_linked_namespaces);

在这个函数中,首先判断 extinfo->flags 是否是 ANDROID_DLEXT_USE_LIBRARY_FD , 如果同时有 ANDROID_DLEXT_USE_LIBRARY_FD_OFFSET , 标志在 Android 官网的解释如下

标志 说明
ANDROID_DLEXT_USE_LIBRARY_FD 使用 library_fd 替代按名称打开文件。文件名参数仍用于标识库。
ANDROID_DLEXT_USE_LIBRARY_FD_OFFSET 如果使用 library_fd 打开库,则从 library_fd_offset 开始读取。主要用于加载存储在其他文件中的库(如解压后的 ZIP 压缩包中的库)。只有在设置了 ANDROID_DLEXT_USE_LIBRARY_FD 时,此标志才有效。
ANDROID_DLEXT_USE_NAMESPACE 此标志用于在不同的命名空间中加载库。命名空间在 library_namespace 中指定。该标志仅供内部使用(因为 NDK API 中没有命名空间的相关支持)。

通过文件描述符加载库:如果在扩展信息中设置了 ANDROID_DLEXT_USE_LIBRARY_FD 标志,则通过文件描述符(library_fd)而非文件名来加载库。这种方式通常用于加载压缩包中的库或是文件系统外部的库。

路径解析:如果通过文件描述符成功获取到库的实际路径,就使用该路径;如果失败,则使用库的原始名称作为回退。

偏移量支持:如果库通过文件描述符加载并且设置了偏移量(library_fd_offset),则在加载时使用该偏移量。这对于加载嵌套在其他文件中的库(例如压缩文件中的库)很有用。

调用 load_library 加载库:在准备好所有必要的信息后,最终调用 load_library 来加载共享库。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
const char* name = task->get_name();
soinfo* needed_by = task->get_needed_by();
const android_dlextinfo* extinfo = task->get_extinfo();

// 如果 extinfo->flags 的标记是 ANDROID_DLEXT_USE_LIBRARY_FD, 则直接通过
//fd 文件描述符来打开
if (extinfo != nullptr && (extinfo->flags & ANDROID_DLEXT_USE_LIBRARY_FD) != 0) {
off64_t file_offset = 0;
if ((extinfo->flags & ANDROID_DLEXT_USE_LIBRARY_FD_OFFSET) != 0) {
file_offset = extinfo->library_fd_offset;
}

std::string realpath;
if (!realpath_fd(extinfo->library_fd, &realpath)) {
if (!is_first_stage_init()) {
PRINT(
"warning: unable to get realpath for the library \"%s\" by extinfo->library_fd. "
"Will use given name.",
name);
}
realpath = name;
}

task->set_fd(extinfo->library_fd, false);
task->set_file_offset(file_offset);
return load_library(ns, task, load_tasks, rtld_flags, realpath, search_linked_namespaces);
}

调用 open_library 打开它

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
// Open the file.
off64_t file_offset;
std::string realpath;
int fd = open_library(ns, zip_archive_cache, name, needed_by, &file_offset, &realpath);
// 如果打开 so 失败,寻找失败原因
if (fd == -1) {
if (task->is_dt_needed()) {
if (needed_by->is_main_executable()) {
DL_OPEN_ERR("library \"%s\" not found: needed by main executable", name);
} else {
DL_OPEN_ERR("library \"%s\" not found: needed by %s in namespace %s", name,
needed_by->get_realpath(), task->get_start_from()->get_name());
}
} else {
DL_OPEN_ERR("library \"%s\" not found", name);
}
return false;
}

//set fd and file_offset
task->set_fd(fd, true);
task->set_file_offset(file_offset);

接下来将会调用 open_library_at_path

open_library 函数遵循如下步骤来查找并打开库:

  1. 如果库是一个绝对路径,则直接打开它。
  2. 否则,首先尝试在命名空间的 LD_LIBRARY_PATH 路径中查找库。
  3. 如果未找到,尝试在 DT_RUNPATH 中查找库(如果当前库是其他库的依赖)。
  4. 最后,尝试在命名空间的默认路径中查找库。
  5. 如果库成功找到,返回文件描述符;如果找不到,返回 -1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
static int open_library(android_namespace_t* ns,
ZipArchiveCache* zip_archive_cache,
const char* name, soinfo *needed_by,
off64_t* file_offset, std::string* realpath) {
TRACE("[ opening %s from namespace %s ]", name, ns->get_name());

// If the name contains a slash, we should attempt to open it directly and not search the paths.
// 有斜杠,说明是绝对路径打开的
if (strchr(name, '/') != nullptr) {
return open_library_at_path(zip_archive_cache, name, file_offset, realpath);
}

// LD_LIBRARY_PATH has the highest priority. We don't have to check accessibility when searching
// the namespace's path lists, because anything found on a namespace path list should always be
// accessible.
int fd = open_library_on_paths(zip_archive_cache, name, file_offset, ns->get_ld_library_paths(), realpath);

// Try the DT_RUNPATH, and verify that the library is accessible.
if (fd == -1 && needed_by != nullptr) {
fd = open_library_on_paths(zip_archive_cache, name, file_offset, needed_by->get_dt_runpath(), realpath);
if (fd != -1 && !ns->is_accessible(*realpath)) {
close(fd);
fd = -1;
}
}

// Finally search the namespace's main search path list.
if (fd == -1) {
fd = open_library_on_paths(zip_archive_cache, name, file_offset, ns->get_default_library_paths(), realpath);
}

return fd;
}

open_library_at_path 中才算是真正的使用 open 函数打开了这个 so, 并返回文件描述符 fd , 传入的两个标志的含义分别为

  • O_RDONLY 表示以只读方式打开文件。
  • O_CLOEXEC 表示在 exec 族函数 (execl, execlp, execle, execv, execvp, execvpe) 调用后,将自动关闭文件描述符
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
static int open_library_at_path(ZipArchiveCache* zip_archive_cache,
const char* path, off64_t* file_offset,
std::string* realpath) {
int fd = -1;
// 如果路径中包含 "!/", 则通过 zipfile 打开库
if (strstr(path, kZipFileSeparator) != nullptr) {
fd = open_library_in_zipfile(zip_archive_cache, path, file_offset, realpath);
}

if (fd == -1) {
fd = TEMP_FAILURE_RETRY(open(path, O_RDONLY | O_CLOEXEC));
if (fd != -1) {
*file_offset = 0;
if (!realpath_fd(fd, realpath)) {
if (!is_first_stage_init()) {
PRINT("warning: unable to get realpath for the library \"%s\". Will use given path.",
path);
}
*realpath = path;
}
}
}

return fd;
}

返回重载的load_library

1
return load_library(ns, task, load_tasks, rtld_flags, realpath, search_linked_namespaces);

重载的 load_library

函数声明:

1
2
3
4
5
6
7
//android-platform\bionic\linker\linker.cpp
static bool load_library(android_namespace_t* ns,
LoadTask* task,
LoadTaskList* load_tasks,
int rtld_flags,
const std::string& realpath,
bool search_linked_namespaces);

这个函数的开头做了一大堆参数合法性的检查,随后终于开始解析 so 了,其关键函数为 task->read(realpath.c_str(), file_stat.st_size)

**分配 soinfo**:首先为当前库分配一个 soinfo 对象,该对象包含了库的元数据和相关信息。

读取 ELF 头和段:读取 ELF 文件的头和动态段,解析库的运行时路径、库名称和标志。

**解析 DT_RUNPATHDT_SONAMEDT_FLAGS_1**:提取并设置库的运行时路径、名称和标志等信息。

处理 DT_NEEDED 依赖项:为每个依赖的库创建一个新的加载任务,并将其加入到任务列表中。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
soinfo* si = soinfo_alloc(ns, realpath.c_str(), &file_stat, file_offset, rtld_flags);

task->set_soinfo(si);

// Read the ELF header and some of the segments.
if (!task->read(realpath.c_str(), file_stat.st_size)) {
task->remove_cached_elf_reader();
task->set_soinfo(nullptr);
soinfo_free(si);
return false;
}

// Find and set DT_RUNPATH, DT_SONAME, and DT_FLAGS_1.
// Note that these field values are temporary and are
// going to be overwritten on soinfo::prelink_image
// with values from PT_LOAD segments.
const ElfReader& elf_reader = task->get_elf_reader();
for (const ElfW(Dyn)* d = elf_reader.dynamic(); d->d_tag != DT_NULL; ++d) {
if (d->d_tag == DT_RUNPATH) {
si->set_dt_runpath(elf_reader.get_string(d->d_un.d_val));
}
if (d->d_tag == DT_SONAME) {
si->set_soname(elf_reader.get_string(d->d_un.d_val));
}
// We need to identify a DF_1_GLOBAL library early so we can link it to namespaces.
if (d->d_tag == DT_FLAGS_1) {
si->set_dt_flags_1(d->d_un.d_val);
}
}

for_each_dt_needed(task->get_elf_reader(), [&](const char* name) {
LD_LOG(kLogDlopen, "load_library(ns=%s, task=%s): Adding DT_NEEDED task: %s",
ns->get_name(), task->get_name(), name);
load_tasks->push_back(LoadTask::create(name, si, ns, task->get_readers_map()));
});

LoadTask::read

初始化了一个 ElfReader , 随后调用 elf_reader.Read 正式开始读取

1
2
3
4
5
//android-platform\bionic\linker\linker.cpp
bool read(const char* realpath, off64_t file_size) {
ElfReader& elf_reader = get_elf_reader();
return elf_reader.Read(realpath, fd_, file_offset_, file_size);
}

ElfReader::Read

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
//android-platform\bionic\linker\linker_phdr.cpp
bool ElfReader::Read(const char* name, int fd, off64_t file_offset, off64_t file_size) {
if (did_read_) {
return true;
}
name_ = name;
fd_ = fd;
file_offset_ = file_offset;
file_size_ = file_size;

if (ReadElfHeader() &&
VerifyElfHeader() &&
ReadProgramHeaders() &&
ReadSectionHeaders() &&
ReadDynamicSection()) {
did_read_ = true;
}

return did_read_;
}

在获取到待加载的 so 的各个段的结构之后,接下来就是解析 .dynamic 中保存的符号

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
//android-platform\bionic\linker\linker.cpp
// Find and set DT_RUNPATH, DT_SONAME, and DT_FLAGS_1.
// Note that these field values are temporary and are
// going to be overwritten on soinfo::prelink_image
// with values from PT_LOAD segments.
const ElfReader& elf_reader = task->get_elf_reader();
for (const ElfW(Dyn)* d = elf_reader.dynamic(); d->d_tag != DT_NULL; ++d) {
if (d->d_tag == DT_RUNPATH) {
si->set_dt_runpath(elf_reader.get_string(d->d_un.d_val));
}
if (d->d_tag == DT_SONAME) {
si->set_soname(elf_reader.get_string(d->d_un.d_val));
}
// We need to identify a DF_1_GLOBAL library early so we can link it to namespaces.
if (d->d_tag == DT_FLAGS_1) {
si->set_dt_flags_1(d->d_un.d_val);
}
}

之后找到待加载的 so 的依赖库,这里有一个模板函数 for_each_dt_needed , 找到 .dynamic 中所有带有 DT_NEEDED 标志的字符串,这些字符串的名称就是这个 so 所需要的依赖库,然后将它们添加到 load_tasks 队列中

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
//android-platform\bionic\linker\linker.cpp
for_each_dt_needed(task->get_elf_reader(), [&](const char* name) {
LD_LOG(kLogDlopen, "load_library(ns=%s, task=%s): Adding DT_NEEDED task: %s",
ns->get_name(), task->get_name(), name);
load_tasks->push_back(LoadTask::create(name, si, ns, task->get_readers_map()));
});

//android-platform\bionic\linker\linker_soinfo.h
template<typename F>
void for_each_dt_needed(const soinfo* si, F action) {
for (const ElfW(Dyn)* d = si->dynamic; d->d_tag != DT_NULL; ++d) {
if (d->d_tag == DT_NEEDED) {
action(fix_dt_needed(si->get_string(d->d_un.d_val), si->get_realpath()));
}
}
}

乱序加载库

为了防御攻击

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
// Step 2: Load libraries in random order (see b/24047022)
LoadTaskList load_list;
for (auto&& task : load_tasks) {
soinfo* si = task->get_soinfo();
auto pred = [&](const LoadTask* t) {
return t->get_soinfo() == si;
};

if (!si->is_linked() &&
std::find_if(load_list.begin(), load_list.end(), pred) == load_list.end() ) {
load_list.push_back(task);
}
}
bool reserved_address_recursive = false;
if (extinfo) {
reserved_address_recursive = extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS_RECURSIVE;
}
if (!reserved_address_recursive) {
// Shuffle the load order in the normal case, but not if we are loading all
// the libraries to a reserved address range.
shuffle(&load_list);
}

// Set up address space parameters.
address_space_params extinfo_params, default_params;
size_t relro_fd_offset = 0;
if (extinfo) {
if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS) {
extinfo_params.start_addr = extinfo->reserved_addr;
extinfo_params.reserved_size = extinfo->reserved_size;
extinfo_params.must_use_address = true;
} else if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS_HINT) {
extinfo_params.start_addr = extinfo->reserved_addr;
extinfo_params.reserved_size = extinfo->reserved_size;
}
}

for (auto&& task : load_list) {
address_space_params* address_space =
(reserved_address_recursive || !task->is_dt_needed()) ? &extinfo_params : &default_params;
// 加载所有的库,包括待加载的 so
if (!task->load(address_space)) {
return false;
}
}

load 函数就是将 ELF 的相关结构的值赋值给 si_ , 其中我们可以看到比较重要的字段有 phdr_count , loaded_phdr

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
bool load(address_space_params* address_space) {
ElfReader& elf_reader = get_elf_reader();
if (!elf_reader.Load(address_space)) {
return false;
}

si_->base = elf_reader.load_start();
si_->size = elf_reader.load_size();
si_->set_mapped_by_caller(elf_reader.is_mapped_by_caller());
si_->load_bias = elf_reader.load_bias();
si_->phnum = elf_reader.phdr_count();
si_->phdr = elf_reader.loaded_phdr();
si_->set_gap_start(elf_reader.gap_start());
si_->set_gap_size(elf_reader.gap_size());

return true;
}

预链接解析所有依赖库

1
2
3
4
5
6
7
8
// Step 3: pre-link all DT_NEEDED libraries in breadth first order.
for (auto&& task : load_tasks) {
soinfo* si = task->get_soinfo();
if (!si->is_linked() && !si->prelink_image()) {
return false;
}
register_soinfo_tls(si);
}

调用了 prelink_image 来预链接依赖库,主要是遍历 .dynamic 节,来提取必要的信息例如 strtab_ , symtab_ , plt_rela_ , init_array_ 等等各种必要的信息

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
bool soinfo::prelink_image() {
if (flags_ & FLAG_PRELINKED) return true;
/* Extract dynamic section */
ElfW(Word) dynamic_flags = 0;
// 提取动态节(dynamic section)
phdr_table_get_dynamic_section(phdr, phnum, load_bias, &dynamic, &dynamic_flags);

/* We can't log anything until the linker is relocated */
bool relocating_linker = (flags_ & FLAG_LINKER) != 0;
if (!relocating_linker) {
INFO("[ Linking \"%s\" ]", get_realpath());
DEBUG("si->base = %p si->flags = 0x%08x", reinterpret_cast<void*>(base), flags_);
}

if (dynamic == nullptr) {
if (!relocating_linker) {
DL_ERR("missing PT_DYNAMIC in \"%s\"", get_realpath());
}
return false;
} else {
if (!relocating_linker) {
DEBUG("dynamic = %p", dynamic);
}
}

#if defined(__arm__)
(void) phdr_table_get_arm_exidx(phdr, phnum, load_bias,
&ARM_exidx, &ARM_exidx_count);
#endif

TlsSegment tls_segment;
if (__bionic_get_tls_segment(phdr, phnum, load_bias, &tls_segment)) {
if (!__bionic_check_tls_alignment(&tls_segment.alignment)) {
if (!relocating_linker) {
DL_ERR("TLS segment alignment in \"%s\" is not a power of 2: %zu",
get_realpath(), tls_segment.alignment);
}
return false;
}
tls_ = std::make_unique<soinfo_tls>();
tls_->segment = tls_segment;
}

// Extract useful information from dynamic section.
// Note that: "Except for the DT_NULL element at the end of the array,
// and the relative order of DT_NEEDED elements, entries may appear in any order."
//
// source: http://www.sco.com/developers/gabi/1998-04-29/ch5.dynamic.html
uint32_t needed_count = 0;
// 循环遍历每个动态节,并根据 d_tag 为对应节做相应的处理
for (ElfW(Dyn)* d = dynamic; d->d_tag != DT_NULL; ++d) {
DEBUG("d = %p, d[0](tag) = %p d[1](val) = %p",
d, reinterpret_cast<void*>(d->d_tag), reinterpret_cast<void*>(d->d_un.d_val));
switch (d->d_tag) {
case DT_SONAME:
// this is parsed after we have strtab initialized (see below).
break;

case DT_HASH:
nbucket_ = reinterpret_cast<uint32_t*>(load_bias + d->d_un.d_ptr)[0];
nchain_ = reinterpret_cast<uint32_t*>(load_bias + d->d_un.d_ptr)[1];
bucket_ = reinterpret_cast<uint32_t*>(load_bias + d->d_un.d_ptr + 8);
chain_ = reinterpret_cast<uint32_t*>(load_bias + d->d_un.d_ptr + 8 + nbucket_ * 4);
break;

case DT_GNU_HASH:
gnu_nbucket_ = reinterpret_cast<uint32_t*>(load_bias + d->d_un.d_ptr)[0];
// skip symndx
gnu_maskwords_ = reinterpret_cast<uint32_t*>(load_bias + d->d_un.d_ptr)[2];
gnu_shift2_ = reinterpret_cast<uint32_t*>(load_bias + d->d_un.d_ptr)[3];

gnu_bloom_filter_ = reinterpret_cast<ElfW(Addr)*>(load_bias + d->d_un.d_ptr + 16);
gnu_bucket_ = reinterpret_cast<uint32_t*>(gnu_bloom_filter_ + gnu_maskwords_);
// amend chain for symndx = header[1]
gnu_chain_ = gnu_bucket_ + gnu_nbucket_ -
reinterpret_cast<uint32_t*>(load_bias + d->d_un.d_ptr)[1];

if (!powerof2(gnu_maskwords_)) {
DL_ERR("invalid maskwords for gnu_hash = 0x%x, in \"%s\" expecting power to two",
gnu_maskwords_, get_realpath());
return false;
}
--gnu_maskwords_;

flags_ |= FLAG_GNU_HASH;
break;

case DT_STRTAB:
strtab_ = reinterpret_cast<const char*>(load_bias + d->d_un.d_ptr);
break;

case DT_STRSZ:
strtab_size_ = d->d_un.d_val;
break;

case DT_SYMTAB:
symtab_ = reinterpret_cast<ElfW(Sym)*>(load_bias + d->d_un.d_ptr);
break;

case DT_SYMENT:
if (d->d_un.d_val != sizeof(ElfW(Sym))) {
DL_ERR("invalid DT_SYMENT: %zd in \"%s\"",
static_cast<size_t>(d->d_un.d_val), get_realpath());
return false;
}
break;

case DT_PLTREL:
#if defined(USE_RELA)
if (d->d_un.d_val != DT_RELA) {
DL_ERR("unsupported DT_PLTREL in \"%s\"; expected DT_RELA", get_realpath());
return false;
}
#else
if (d->d_un.d_val != DT_REL) {
DL_ERR("unsupported DT_PLTREL in \"%s\"; expected DT_REL", get_realpath());
return false;
}
#endif
break;

case DT_JMPREL:
#if defined(USE_RELA)
plt_rela_ = reinterpret_cast<ElfW(Rela)*>(load_bias + d->d_un.d_ptr);
#else
plt_rel_ = reinterpret_cast<ElfW(Rel)*>(load_bias + d->d_un.d_ptr);
#endif
break;

case DT_PLTRELSZ:
#if defined(USE_RELA)
plt_rela_count_ = d->d_un.d_val / sizeof(ElfW(Rela));
#else
plt_rel_count_ = d->d_un.d_val / sizeof(ElfW(Rel));
#endif
break;

case DT_PLTGOT:
// Ignored (because RTLD_LAZY is not supported).
break;

case DT_DEBUG:
// Set the DT_DEBUG entry to the address of _r_debug for GDB
// if the dynamic table is writable
if ((dynamic_flags & PF_W) != 0) {
d->d_un.d_val = reinterpret_cast<uintptr_t>(&_r_debug);
}
break;
#if defined(USE_RELA)
case DT_RELA:
rela_ = reinterpret_cast<ElfW(Rela)*>(load_bias + d->d_un.d_ptr);
break;

case DT_RELASZ:
rela_count_ = d->d_un.d_val / sizeof(ElfW(Rela));
break;

case DT_ANDROID_RELA:
android_relocs_ = reinterpret_cast<uint8_t*>(load_bias + d->d_un.d_ptr);
break;

case DT_ANDROID_RELASZ:
android_relocs_size_ = d->d_un.d_val;
break;

case DT_ANDROID_REL:
DL_ERR("unsupported DT_ANDROID_REL in \"%s\"", get_realpath());
return false;

case DT_ANDROID_RELSZ:
DL_ERR("unsupported DT_ANDROID_RELSZ in \"%s\"", get_realpath());
return false;

case DT_RELAENT:
if (d->d_un.d_val != sizeof(ElfW(Rela))) {
DL_ERR("invalid DT_RELAENT: %zd", static_cast<size_t>(d->d_un.d_val));
return false;
}
break;

// Ignored (see DT_RELCOUNT comments for details).
case DT_RELACOUNT:
break;

case DT_REL:
DL_ERR("unsupported DT_REL in \"%s\"", get_realpath());
return false;

case DT_RELSZ:
DL_ERR("unsupported DT_RELSZ in \"%s\"", get_realpath());
return false;

#else
case DT_REL:
rel_ = reinterpret_cast<ElfW(Rel)*>(load_bias + d->d_un.d_ptr);
break;

case DT_RELSZ:
rel_count_ = d->d_un.d_val / sizeof(ElfW(Rel));
break;

case DT_RELENT:
if (d->d_un.d_val != sizeof(ElfW(Rel))) {
DL_ERR("invalid DT_RELENT: %zd", static_cast<size_t>(d->d_un.d_val));
return false;
}
break;

case DT_ANDROID_REL:
android_relocs_ = reinterpret_cast<uint8_t*>(load_bias + d->d_un.d_ptr);
break;

case DT_ANDROID_RELSZ:
android_relocs_size_ = d->d_un.d_val;
break;

case DT_ANDROID_RELA:
DL_ERR("unsupported DT_ANDROID_RELA in \"%s\"", get_realpath());
return false;

case DT_ANDROID_RELASZ:
DL_ERR("unsupported DT_ANDROID_RELASZ in \"%s\"", get_realpath());
return false;

// "Indicates that all RELATIVE relocations have been concatenated together,
// and specifies the RELATIVE relocation count."
//
// TODO: Spec also mentions that this can be used to optimize relocation process;
// Not currently used by bionic linker - ignored.
case DT_RELCOUNT:
break;

case DT_RELA:
DL_ERR("unsupported DT_RELA in \"%s\"", get_realpath());
return false;

case DT_RELASZ:
DL_ERR("unsupported DT_RELASZ in \"%s\"", get_realpath());
return false;

#endif
case DT_RELR:
case DT_ANDROID_RELR:
relr_ = reinterpret_cast<ElfW(Relr)*>(load_bias + d->d_un.d_ptr);
break;

case DT_RELRSZ:
case DT_ANDROID_RELRSZ:
relr_count_ = d->d_un.d_val / sizeof(ElfW(Relr));
break;

case DT_RELRENT:
case DT_ANDROID_RELRENT:
if (d->d_un.d_val != sizeof(ElfW(Relr))) {
DL_ERR("invalid DT_RELRENT: %zd", static_cast<size_t>(d->d_un.d_val));
return false;
}
break;

// Ignored (see DT_RELCOUNT comments for details).
// There is no DT_RELRCOUNT specifically because it would only be ignored.
case DT_ANDROID_RELRCOUNT:
break;

case DT_INIT:
init_func_ = reinterpret_cast<linker_ctor_function_t>(load_bias + d->d_un.d_ptr);
DEBUG("%s constructors (DT_INIT) found at %p", get_realpath(), init_func_);
break;

case DT_FINI:
fini_func_ = reinterpret_cast<linker_dtor_function_t>(load_bias + d->d_un.d_ptr);
DEBUG("%s destructors (DT_FINI) found at %p", get_realpath(), fini_func_);
break;

case DT_INIT_ARRAY:
init_array_ = reinterpret_cast<linker_ctor_function_t*>(load_bias + d->d_un.d_ptr);
DEBUG("%s constructors (DT_INIT_ARRAY) found at %p", get_realpath(), init_array_);
break;

case DT_INIT_ARRAYSZ:
init_array_count_ = static_cast<uint32_t>(d->d_un.d_val) / sizeof(ElfW(Addr));
break;

case DT_FINI_ARRAY:
fini_array_ = reinterpret_cast<linker_dtor_function_t*>(load_bias + d->d_un.d_ptr);
DEBUG("%s destructors (DT_FINI_ARRAY) found at %p", get_realpath(), fini_array_);
break;

case DT_FINI_ARRAYSZ:
fini_array_count_ = static_cast<uint32_t>(d->d_un.d_val) / sizeof(ElfW(Addr));
break;

case DT_PREINIT_ARRAY:
preinit_array_ = reinterpret_cast<linker_ctor_function_t*>(load_bias + d->d_un.d_ptr);
DEBUG("%s constructors (DT_PREINIT_ARRAY) found at %p", get_realpath(), preinit_array_);
break;

case DT_PREINIT_ARRAYSZ:
preinit_array_count_ = static_cast<uint32_t>(d->d_un.d_val) / sizeof(ElfW(Addr));
break;

case DT_TEXTREL:
#if defined(__LP64__)
DL_ERR("\"%s\" has text relocations", get_realpath());
return false;
#else
has_text_relocations = true;
break;
#endif

case DT_SYMBOLIC:
has_DT_SYMBOLIC = true;
break;

case DT_NEEDED:
++needed_count;
break;

case DT_FLAGS:
if (d->d_un.d_val & DF_TEXTREL) {
#if defined(__LP64__)
DL_ERR("\"%s\" has text relocations", get_realpath());
return false;
#else
has_text_relocations = true;
#endif
}
if (d->d_un.d_val & DF_SYMBOLIC) {
has_DT_SYMBOLIC = true;
}
break;

case DT_FLAGS_1:
set_dt_flags_1(d->d_un.d_val);

if ((d->d_un.d_val & ~SUPPORTED_DT_FLAGS_1) != 0) {
DL_WARN("Warning: \"%s\" has unsupported flags DT_FLAGS_1=%p "
"(ignoring unsupported flags)",
get_realpath(), reinterpret_cast<void*>(d->d_un.d_val));
}
break;

// Ignored: "Its use has been superseded by the DF_BIND_NOW flag"
case DT_BIND_NOW:
break;

case DT_VERSYM:
versym_ = reinterpret_cast<ElfW(Versym)*>(load_bias + d->d_un.d_ptr);
break;

case DT_VERDEF:
verdef_ptr_ = load_bias + d->d_un.d_ptr;
break;
case DT_VERDEFNUM:
verdef_cnt_ = d->d_un.d_val;
break;

case DT_VERNEED:
verneed_ptr_ = load_bias + d->d_un.d_ptr;
break;

case DT_VERNEEDNUM:
verneed_cnt_ = d->d_un.d_val;
break;

case DT_RUNPATH:
// this is parsed after we have strtab initialized (see below).
break;

case DT_TLSDESC_GOT:
case DT_TLSDESC_PLT:
// These DT entries are used for lazy TLSDESC relocations. Bionic
// resolves everything eagerly, so these can be ignored.
break;

#if defined(__aarch64__)
case DT_AARCH64_BTI_PLT:
case DT_AARCH64_PAC_PLT:
case DT_AARCH64_VARIANT_PCS:
// Ignored: AArch64 processor-specific dynamic array tags.
break;
#endif

default:
if (!relocating_linker) {
const char* tag_name;
if (d->d_tag == DT_RPATH) {
tag_name = "DT_RPATH";
} else if (d->d_tag == DT_ENCODING) {
tag_name = "DT_ENCODING";
} else if (d->d_tag >= DT_LOOS && d->d_tag <= DT_HIOS) {
tag_name = "unknown OS-specific";
} else if (d->d_tag >= DT_LOPROC && d->d_tag <= DT_HIPROC) {
tag_name = "unknown processor-specific";
} else {
tag_name = "unknown";
}
DL_WARN("Warning: \"%s\" unused DT entry: %s (type %p arg %p) (ignoring)",
get_realpath(),
tag_name,
reinterpret_cast<void*>(d->d_tag),
reinterpret_cast<void*>(d->d_un.d_val));
}
break;
}
}

DEBUG("si->base = %p, si->strtab = %p, si->symtab = %p",
reinterpret_cast<void*>(base), strtab_, symtab_);

// Validity checks.
if (relocating_linker && needed_count != 0) {
DL_ERR("linker cannot have DT_NEEDED dependencies on other libraries");
return false;
}
if (nbucket_ == 0 && gnu_nbucket_ == 0) {
DL_ERR("empty/missing DT_HASH/DT_GNU_HASH in \"%s\" "
"(new hash type from the future?)", get_realpath());
return false;
}
if (strtab_ == nullptr) {
DL_ERR("empty/missing DT_STRTAB in \"%s\"", get_realpath());
return false;
}
if (symtab_ == nullptr) {
DL_ERR("empty/missing DT_SYMTAB in \"%s\"", get_realpath());
return false;
}

// Second pass - parse entries relying on strtab. Skip this while relocating the linker so as to
// avoid doing heap allocations until later in the linker's initialization.
if (!relocating_linker) {
for (ElfW(Dyn)* d = dynamic; d->d_tag != DT_NULL; ++d) {
switch (d->d_tag) {
case DT_SONAME:
set_soname(get_string(d->d_un.d_val));
break;
case DT_RUNPATH:
set_dt_runpath(get_string(d->d_un.d_val));
break;
}
}
}

// Before M release, linker was using basename in place of soname. In the case when DT_SONAME is
// absent some apps stop working because they can't find DT_NEEDED library by soname. This
// workaround should keep them working. (Applies only for apps targeting sdk version < M.) Make
// an exception for the main executable, which does not need to have DT_SONAME. The linker has an
// DT_SONAME but the soname_ field is initialized later on.
if (soname_.empty() && this != solist_get_somain() && !relocating_linker &&
get_application_target_sdk_version() < 23) {
soname_ = basename(realpath_.c_str());
DL_WARN_documented_change(23, "missing-soname-enforced-for-api-level-23",
"\"%s\" has no DT_SONAME (will use %s instead)", get_realpath(),
soname_.c_str());

// Don't call add_dlwarning because a missing DT_SONAME isn't important enough to show in the UI
}

// Validate each library's verdef section once, so we don't have to validate
// it each time we look up a symbol with a version.
if (!validate_verdef_section(this)) return false;

flags_ |= FLAG_PRELINKED;
return true;
}

构造全局组

为预链接的依赖库设置 DF_1_GLOBAL 全局标志,来标记这个库在全局组中

1
2
3
4
5
6
7
8
// Step 4: Construct the global group. DF_1_GLOBAL bit is force set for LD_PRELOADed libs because
// they must be added to the global group. Note: The DF_1_GLOBAL bit for a library is normally set
// in step 3.
if (ld_preloads != nullptr) {
for (auto&& si : *ld_preloads) {
si->set_dt_flags_1(si->get_dt_flags_1() | DF_1_GLOBAL);
}
}

收集 local_groups 的根节点

跨命名空间链接:通过检查库是否跨越命名空间边界,确保在不同命名空间中的库能够正确链接。

本地组根节点local_group_roots 用来存储跨越命名空间边界的库的根节点,确保它们能在正确的顺序中被链接。

避免重复:使用 std::find 确保不会有重复的库被加入到根节点列表中。

命名空间管理:确保命名空间的隔离性,对于依赖于其他库的任务,确保它们的库能够正确地被加载并链接。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
// Step 5: Collect roots of local_groups.
// Whenever needed_by->si link crosses a namespace boundary it forms its own local_group.
// Here we collect new roots to link them separately later on. Note that we need to avoid
// collecting duplicates. Also the order is important. They need to be linked in the same
// BFS order we link individual libraries.
std::vector<soinfo*> local_group_roots;
if (start_with != nullptr && add_as_children) {
local_group_roots.push_back(start_with);
} else {
CHECK(soinfos_count == 1);
local_group_roots.push_back(soinfos[0]);
}

for (auto&& task : load_tasks) {
soinfo* si = task->get_soinfo();
soinfo* needed_by = task->get_needed_by();
bool is_dt_needed = needed_by != nullptr && (needed_by != start_with || add_as_children);
android_namespace_t* needed_by_ns =
is_dt_needed ? needed_by->get_primary_namespace() : ns;

if (!si->is_linked() && si->get_primary_namespace() != needed_by_ns) {
auto it = std::find(local_group_roots.begin(), local_group_roots.end(), si);
LD_LOG(kLogDlopen,
"Crossing namespace boundary (si=%s@%p, si_ns=%s@%p, needed_by=%s@%p, ns=%s@%p, needed_by_ns=%s@%p) adding to local_group_roots: %s",
si->get_realpath(),
si,
si->get_primary_namespace()->get_name(),
si->get_primary_namespace(),
needed_by == nullptr ? "(nullptr)" : needed_by->get_realpath(),
needed_by,
ns->get_name(),
ns,
needed_by_ns->get_name(),
needed_by_ns,
it == local_group_roots.end() ? "yes" : "no");

if (it == local_group_roots.end()) {
local_group_roots.push_back(si);
}
}
}

链接所有的 local groups

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
// Step 6: Link all local groups
for (auto root : local_group_roots) {
soinfo_list_t local_group;
android_namespace_t* local_group_ns = root->get_primary_namespace();

walk_dependencies_tree(root,
[&] (soinfo* si) {
if (local_group_ns->is_accessible(si)) {
local_group.push_back(si);
return kWalkContinue;
} else {
return kWalkSkip;
}
});

// 获取全局组包含的 soinfo,因为预加载库是一起加载的跟 local_group_ns 是同一个命名空间
// 所有这里的全局组已经包含了预加载库
soinfo_list_t global_group = local_group_ns->get_global_group();
// 将本地组和全局组都添加到 lookup_list 中
SymbolLookupList lookup_list(global_group, local_group);
soinfo* local_group_root = local_group.front();

bool linked = local_group.visit([&](soinfo* si) {
// Even though local group may contain accessible soinfos from other namespaces
// we should avoid linking them (because if they are not linked -> they
// are in the local_group_roots and will be linked later).
if (!si->is_linked() && si->get_primary_namespace() == local_group_ns) {
const android_dlextinfo* link_extinfo = nullptr;
if (si == soinfos[0] || reserved_address_recursive) {
// Only forward extinfo for the first library unless the recursive
// flag is set.
link_extinfo = extinfo;
}
if (__libc_shared_globals()->load_hook) {
__libc_shared_globals()->load_hook(si->load_bias, si->phdr, si->phnum);
}
lookup_list.set_dt_symbolic_lib(si->has_DT_SYMBOLIC ? si : nullptr);
// 调用 link_image 开始进行依赖库的动态链接,重定位等工作
if (!si->link_image(lookup_list, local_group_root, link_extinfo, &relro_fd_offset) ||
!get_cfi_shadow()->AfterLoad(si, solist_get_head())) {
return false;
}
}

return true;
});

if (!linked) {
return false;
}
}

当把所有的本地组和全局组加入到 lookup_list 中后,就开始调用 si->link_image 来对这些库进行链接的操作

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
bool soinfo::link_image(const SymbolLookupList& lookup_list, soinfo* local_group_root,
const android_dlextinfo* extinfo, size_t* relro_fd_offset) {
if (is_image_linked()) {
// already linked.
return true;
}

if (g_is_ldd && !is_main_executable()) {
async_safe_format_fd(STDOUT_FILENO, "\t%s => %s (%p)\n", get_soname(),
get_realpath(), reinterpret_cast<void*>(base));
}

local_group_root_ = local_group_root;
if (local_group_root_ == nullptr) {
local_group_root_ = this;
}

if ((flags_ & FLAG_LINKER) == 0 && local_group_root_ == this) {
target_sdk_version_ = get_application_target_sdk_version();
}

...

// 进行符号的重定位
if (!relocate(lookup_list)) {
return false;
}

DEBUG("[ finished linking %s ]", get_realpath());

...
}

soinfo::link_image 中调用了 relocate 去进行符号的重定位

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
//android-platform\bionic\linker\linker_relocate.cpp
bool soinfo::relocate(const SymbolLookupList& lookup_list) {

VersionTracker version_tracker;

if (!version_tracker.init(this)) {
return false;
}

Relocator relocator(version_tracker, lookup_list);
relocator.si = this;
//`.strtab` 节保存的是符号字符串表,表中的内容会被 `.symtab` 的 `ElfN_Sym` 结构中的 `st_name` 引用
relocator.si_strtab = strtab_;
relocator.si_strtab_size = has_min_version(1) ? strtab_size_ : SIZE_MAX;
//`.symtab` 节是一个 `ElfN_Sym` 的数组,保存了符号信息
relocator.si_symtab = symtab_;
relocator.tlsdesc_args = &tlsdesc_args_;
relocator.tls_tp_base = __libc_shared_globals()->static_tls_layout.offset_thread_pointer();

////android_relocs_在 prelink_image () 中设置,动态节有 DT_ANDROID_REL 才会设置
if (android_relocs_ != nullptr) {
// check signature
if (android_relocs_size_ > 3 &&
android_relocs_[0] == 'A' &&
android_relocs_[1] == 'P' &&
android_relocs_[2] == 'S' &&
android_relocs_[3] == '2') {
DEBUG("[ android relocating %s ]", get_realpath());

const uint8_t* packed_relocs = android_relocs_ + 4;
const size_t packed_relocs_size = android_relocs_size_ - 4;

if (!packed_relocate<RelocMode::Typical>(relocator, sleb128_decoder(packed_relocs, packed_relocs_size))) {
return false;
}
} else {
DL_ERR("bad android relocation header.");
return false;
}
}

if (relr_ != nullptr) {
DEBUG("[ relocating %s relr ]", get_realpath());
if (!relocate_relr()) {
return false;
}
}

#if defined(USE_RELA)
if (rela_ != nullptr) {
DEBUG("[ relocating %s rela ]", get_realpath());

if (!plain_relocate<RelocMode::Typical>(relocator, rela_, rela_count_)) {
return false;
}
}
if (plt_rela_ != nullptr) {
DEBUG("[ relocating %s plt rela ]", get_realpath());
if (!plain_relocate<RelocMode::JumpTable>(relocator, plt_rela_, plt_rela_count_)) {
return false;
}
}
#else
if (rel_ != nullptr) {
DEBUG("[ relocating %s rel ]", get_realpath());
if (!plain_relocate<RelocMode::Typical>(relocator, rel_, rel_count_)) {
return false;
}
}
if (plt_rel_ != nullptr) {
DEBUG("[ relocating %s plt rel ]", get_realpath());
if (!plain_relocate<RelocMode::JumpTable>(relocator, plt_rel_, plt_rel_count_)) {
return false;
}
}
#endif

// Once the tlsdesc_args_ vector's size is finalized, we can write the addresses of its elements
// into the TLSDESC relocations.
#if defined(__aarch64__)
// Bionic currently only implements TLSDESC for arm64.
for (const std::pair<TlsDescriptor*, size_t>& pair : relocator.deferred_tlsdesc_relocs) {
TlsDescriptor* desc = pair.first;
desc->func = tlsdesc_resolver_dynamic;
desc->arg = reinterpret_cast<size_t>(&tlsdesc_args_[pair.second]);
}
#endif

return true;
}

随后依次调用了 plain_relocate->plain_relocate_impl->process_relocation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
template <RelocMode OptMode, typename ...Args>
static bool plain_relocate(Relocator& relocator, Args ...args) {
return needs_slow_relocate_loop(relocator) ?
plain_relocate_impl<RelocMode::General>(relocator, args...) :
plain_relocate_impl<OptMode>(relocator, args...);
}

template <RelocMode Mode>
__attribute__((noinline))
static bool plain_relocate_impl(Relocator& relocator, rel_t* rels, size_t rel_count) {
for (size_t i = 0; i < rel_count; ++i) {
if (!process_relocation<Mode>(relocator, rels[i])) {
return false;
}
}
return true;
}

template <RelocMode Mode>
__attribute__((always_inline))
static inline bool process_relocation(Relocator& relocator, const rel_t& reloc) {
return Mode == RelocMode::General ?
process_relocation_general(relocator, reloc) :
process_relocation_impl<Mode>(relocator, reloc);
}

最终在 process_relocation_impl 实现了符号的重定向并调用 lookup_symbol 来查找符号

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
template <RelocMode Mode>
__attribute__((always_inline))
static bool process_relocation_impl(Relocator& relocator, const rel_t& reloc) {
constexpr bool IsGeneral = Mode == RelocMode::General;

void* const rel_target = reinterpret_cast<void*>(reloc.r_offset + relocator.si->load_bias);
const uint32_t r_type = ELFW(R_TYPE)(reloc.r_info);
const uint32_t r_sym = ELFW(R_SYM)(reloc.r_info);

soinfo* found_in = nullptr;
const ElfW(Sym)* sym = nullptr;
const char* sym_name = nullptr;
ElfW(Addr) sym_addr = 0;

if (r_sym != 0) {
// 获取重定向的符号名
sym_name = relocator.get_string(relocator.si_symtab[r_sym].st_name);
}

...

#if defined(USE_RELA)
auto get_addend_rel = [&]() -> ElfW(Addr) { return reloc.r_addend; };
auto get_addend_norel = [&]() -> ElfW(Addr) { return reloc.r_addend; };
#else
auto get_addend_rel = [&]() -> ElfW(Addr) { return *static_cast<ElfW(Addr)*>(rel_target); };
auto get_addend_norel = [&]() -> ElfW(Addr) { return 0; };
#endif

if (IsGeneral && is_tls_reloc(r_type)) {
...
} else {
if (r_sym == 0) {
// Do nothing.
} else {
// 利用 lookup_symbol 来查找符号
if (!lookup_symbol<IsGeneral>(relocator, r_sym, sym_name, &found_in, &sym)) return false;
if (sym != nullptr) {
const bool should_protect_segments = handle_text_relocs &&
found_in == relocator.si &&
ELF_ST_TYPE(sym->st_info) == STT_GNU_IFUNC;
if (should_protect_segments && !protect_segments()) return false;
sym_addr = found_in->resolve_symbol_address(sym);
if (should_protect_segments && !unprotect_segments()) return false;
} else if constexpr (IsGeneral) {
// A weak reference to an undefined symbol. We typically use a zero symbol address, but
// use the relocation base for PC-relative relocations, so that the value written is zero.
switch (r_type) {
#if defined(__x86_64__)
case R_X86_64_PC32:
sym_addr = reinterpret_cast<ElfW(Addr)>(rel_target);
break;
#elif defined(__i386__)
case R_386_PC32:
sym_addr = reinterpret_cast<ElfW(Addr)>(rel_target);
break;
#endif
}
}
}
}

// 大部分符号的类型都是 R_GENERIC_JUMP_SLOT
if constexpr (IsGeneral || Mode == RelocMode::JumpTable) {
if (r_type == R_GENERIC_JUMP_SLOT) {
count_relocation_if<IsGeneral>(kRelocAbsolute);
const ElfW(Addr) result = sym_addr + get_addend_norel();
trace_reloc("RELO JMP_SLOT %16p <- %16p %s",
rel_target, reinterpret_cast<void*>(result), sym_name);
*static_cast<ElfW(Addr)*>(rel_target) = result;
return true;
}
}
...
}

lookup_symbol 中调用了 soinfo_do_lookup 来查找符号

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
template <bool DoLogging>
__attribute__((always_inline))
static inline bool lookup_symbol(Relocator& relocator, uint32_t r_sym, const char* sym_name,
soinfo** found_in, const ElfW(Sym)** sym) {
//relocator 是前面传进来包含全局组和本地组的 soinfos,全局组排在最前面
// 如果上一次已经查找过这个符号,那么久没有必要再查找一次
if (r_sym == relocator.cache_sym_val) {
*found_in = relocator.cache_si;
*sym = relocator.cache_sym;
count_relocation_if<DoLogging>(kRelocSymbolCached);
} else {
const version_info* vi = nullptr;
if (!relocator.si->lookup_version_info(relocator.version_tracker, r_sym, sym_name, &vi)) {
return false;
}

soinfo* local_found_in = nullptr;
// 最终调用 soinfo_do_lookup 来查找符号
const ElfW(Sym)* local_sym = soinfo_do_lookup(sym_name, vi, &local_found_in, relocator.lookup_list);

relocator.cache_sym_val = r_sym;
relocator.cache_si = local_found_in;
relocator.cache_sym = local_sym;
*found_in = local_found_in;
*sym = local_sym;
}

if (*sym == nullptr) {
if (ELF_ST_BIND(relocator.si_symtab[r_sym].st_info) != STB_WEAK) {
DL_ERR("cannot locate symbol \"%s\" referenced by \"%s\"...", sym_name, relocator.si->get_realpath());
return false;
}
}

count_relocation_if<DoLogging>(kRelocSymbol);
return true;
}

soinfo_do_lookup 中最终调用模板函数 soinfo_do_lookup_impl 进行符号查找

1
2
3
4
5
6
7
//android-platform\bionic\linker\linker_soinfo.cpp
const ElfW(Sym)* soinfo_do_lookup(const char* name, const version_info* vi,
soinfo** si_found_in, const SymbolLookupList& lookup_list) {
return lookup_list.needs_slow_path() ?
soinfo_do_lookup_impl<true>(name, vi, si_found_in, lookup_list) :
soinfo_do_lookup_impl<false>(name, vi, si_found_in, lookup_list);
}

有 hash 表查 hash 表,没 hash 表用符号查找

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
template <bool IsGeneral>
__attribute__((noinline)) static const ElfW(Sym)*
soinfo_do_lookup_impl(const char* name, const version_info* vi,
soinfo** si_found_in, const SymbolLookupList& lookup_list) {
const auto [ hash, name_len ] = calculate_gnu_hash(name);
constexpr uint32_t kBloomMaskBits = sizeof(ElfW(Addr)) * 8;
SymbolName elf_symbol_name(name);

const SymbolLookupLib* end = lookup_list.end();
const SymbolLookupLib* it = lookup_list.begin();

while (true) {
const SymbolLookupLib* lib;
uint32_t sym_idx;

// Iterate over libraries until we find one whose Bloom filter matches the symbol we're
// searching for.
// 在每一个库中都去寻找有没有指定的符号
while (true) {
if (it == end) return nullptr;
lib = it++;

// 要是没有 hash 表,就通过名称来进行查找
if (IsGeneral && lib->needs_sysv_lookup()) {
if (const ElfW(Sym)* sym = lib->si_->find_symbol_by_name(elf_symbol_name, vi)) {
*si_found_in = lib->si_;
return sym;
}
continue;
}

if (IsGeneral) {
TRACE_TYPE(LOOKUP, "SEARCH %s in %s@%p (gnu)",
name, lib->si_->get_realpath(), reinterpret_cast<void*>(lib->si_->base));
}

// 计算符号 hash 桶查询链
const uint32_t word_num = (hash / kBloomMaskBits) & lib->gnu_maskwords_;
const ElfW(Addr) bloom_word = lib->gnu_bloom_filter_[word_num];
const uint32_t h1 = hash % kBloomMaskBits;
const uint32_t h2 = (hash >> lib->gnu_shift2_) % kBloomMaskBits;

if ((1 & (bloom_word >> h1) & (bloom_word >> h2)) == 1) {
sym_idx = lib->gnu_bucket_[hash % lib->gnu_nbucket_];
if (sym_idx != 0) {
break;
}
}

if (IsGeneral) {
TRACE_TYPE(LOOKUP, "NOT FOUND %s in %s@%p",
name, lib->si_->get_realpath(), reinterpret_cast<void*>(lib->si_->base));
}
}

// Search the library's hash table chain.
ElfW(Versym) verneed = kVersymNotNeeded;
bool calculated_verneed = false;

uint32_t chain_value = 0;
const ElfW(Sym)* sym = nullptr;

//// 根据符号 hash 快速查找
do {
sym = lib->symtab_ + sym_idx;
chain_value = lib->gnu_chain_[sym_idx];
if ((chain_value >> 1) == (hash >> 1)) {
if (vi != nullptr && !calculated_verneed) {
calculated_verneed = true;
verneed = find_verdef_version_index(lib->si_, vi);
}
if (check_symbol_version(lib->versym_, sym_idx, verneed) &&
static_cast<size_t>(sym->st_name) + name_len + 1 <= lib->strtab_size_ &&
memcmp(lib->strtab_ + sym->st_name, name, name_len + 1) == 0 &&
is_symbol_global_and_defined(lib->si_, sym)) {
*si_found_in = lib->si_;
if (IsGeneral) {
TRACE_TYPE(LOOKUP, "FOUND %s in %s (%p) %zd",
name, lib->si_->get_realpath(), reinterpret_cast<void*>(sym->st_value),
static_cast<size_t>(sym->st_size));
}
return sym;
}
}
++sym_idx;
} while ((chain_value & 1) == 0);

if (IsGeneral) {
TRACE_TYPE(LOOKUP, "NOT FOUND %s in %s@%p",
name, lib->si_->get_realpath(), reinterpret_cast<void*>(lib->si_->base));
}
}
}

收尾工作

对依赖库的链接情况进行标记,并增加依赖库的引用计数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
// Step 7: Mark all load_tasks as linked and increment refcounts
// for references between load_groups (at this point it does not matter if
// referenced load_groups were loaded by previous dlopen or as part of this
// one on step 6)
if (start_with != nullptr && add_as_children) {
start_with->set_linked();
}

for (auto&& task : load_tasks) {
soinfo* si = task->get_soinfo();
si->set_linked();
}

for (auto&& task : load_tasks) {
soinfo* si = task->get_soinfo();
soinfo* needed_by = task->get_needed_by();
if (needed_by != nullptr &&
needed_by != start_with &&
needed_by->get_local_group_root() != si->get_local_group_root()) {
// 增加依赖库 so 的引用计数
si->increment_ref_count();
}
}

评论